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Abstract—New N-pyridinothiourea derivatives have been prepared by the high-pressure-promoted condensation of isothio-
cyanates with aminopyridines under uncatalyzed conditions. Complexation of the prototype 3c with diphenyl hydrogen phosphate
was investigated by 1H NMR, and the results suggest that it may be useful as a building block for hydrogen-bonding receptors.
© 2002 Elsevier Science Ltd. All rights reserved.

Thiourea and its related molecules are important as
structural components and as intermediates in agricul-
tural and pharmaceutical chemistry.2 Recently, these
compounds have attracted considerable attention for
their potential use as binding units for artificial recep-
tors in supramolecular chemistry because of their char-
acteristic behavior based on Lewis acids and strong
hydrogen-bond donors.3 Furthermore, in the field of
advanced material chemistry, thioureas can serve as a
useful scaffold by connecting them to electrolumines-
cent organic dyes.4 Their enormous potential has led to
the development of several methods for preparing
thiourea derivatives.5 The most common of these meth-
ods involves the condensation of isothiocyanates with
amino derivatives. However, despite its utility and sim-
plicity, limitations are sometimes encountered, particu-
larly with less reactive amine substrates.

For example, in contrast to the case of aniline deriva-
tives,6 we found that 4-aminopyridine (1a) reacted fairly
slowly with phenylisothiocyanate (2a), even in refluxing
THF, to produce a complex mixture of products from
which, after 18 h, N-pyridinothiourea 3a could be
isolated in 29% yield along with unreacted 2a (22%)

and N,N �-diphenylthiourea (4, 38%) (Scheme 1). The
latter compound 4 must be formed by the self-recombi-
nation of 2a via decomposition to aniline. Considerable
attempts to facilitate the desired condensation reaction
under acid- or base-catalyzed conditions were unsuc-
cessful. These results can be easily understood by
invoking the weakly nucleophilic character of the
amino group of 1a. To overcome this difficulty and also
to suppress undesired side-reactions, we decided to
apply a high-pressure methodology, since our previous
experience suggested that such a condensation reaction
should be favorable at high pressure.7 We report here
the realization of this expectation. The results are sum-
marized in Table 1.8

When the reaction of 1a with 1.2 equiv. of 2a in THF
was conducted at 0.6 GPa and 40°C for 24 h,9 the
desired adduct 3a, mp 142–143°C (from methanol), was
obtained in a much better yield of 67%, contaminated

Scheme 1.
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Table 1. Synthesis of N-pyridinothioureasa
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by only a trace amount of 4 (entry 1). Based on this
general scheme, 3b–3g were prepared in good yields as
highly crystalline materials, but in some cases a longer
reaction period was needed to increase the product
yields (entries 2–7). Adduct 3h, mp 181–183°C (from
methanol), could be obtained by condensing amino-
bipyridine 1d with azo-derived isothiocyanate 2c (entry
8). This result implies that this procedure may be useful
for devising a new type of azo-chromophore-based
colorimetric receptor. The high-pressure technique was
also effective for aliphatic homologs such as cyclo-
hexylisothiocyanate (2d): the corresponding aminopy-
ridine adducts 3i and 3j were produced in respective
yields of 71 and 78% under slightly harsher conditions
(entries 9 and 10).10

Another issue was whether the pyridine–thiourea conju-
gates obtained above could serve as potent building
blocks for artificial receptors in supramolecular chem-
istry. Each molecule contains both a hydrogen-bonding
acceptor (pyridine unit) and a hydrogen-bonding donor
(thiourea unit), and this prompted us to evaluate their
ability to bind to a phosphoric acid diester as a biolog-
ically important species.11 The prototype 3c was used
for this purpose; binding was assessed by 1H NMR

data. Fig. 1 shows the results of titrations in which the
chemical shifts of two types of thiourea NH protons
(NHa and NHb, see Fig. 2) could be monitored as a
function of the amount of diphenyl hydrogen phos-
phate (5) in CD3CN at 23°C. In the absence of 5, the
resonances of NHa (13.80 ppm) and NHb (8.92 ppm)
are distinguishable from each other; the extreme low-
field signal of NHa can be ascribed to favorable
intramolecular hydrogen bonding between NHa and
pyridine-N.12 Adding 5 to a solution of 3c produced an
up-field shift for NHa and a down-field shift for NHb.
The former observation is attributable to the disruption
of hydrogen bonding by a 5-induced competitive bind-
ing event. We carefully analyzed the binding curve of
NHb based on a nonlinear curve-fitting procedure,13

which suggested two complexation steps, as follows:
H+G � HG (Ka1), HG+G � HGG (Ka2), [H]0=[H]+
[HG]+[HGG], where [H] and [G] refer to 3c and 5,
respectively. As a result, the analysis could fully repro-
duce the experimental data to estimate each association
constant (Ka1=51±14 M−1 and Ka2=1,100±220 M−1).14

The results (Ka1�Ka2) could be explained on the basis
of a Ka1 binding mode accompanied by the competitive
disruption of intramolecular hydrogen bonding (vide
supra), as well as a 5-assisted strong association (Ka2) of
a second 5.15 The plausible complex motifs are shown
in Fig. 2, where intermolecular hydrogen bonding
between pyridine-N and 5-OH has taken place, as
inferred from a 1H NMR dilution experiment16 of a 1:1
mixture of 3c and 5 in CD3CN, which showed a
concentration-dependent shift of the resonances due to
the spherical pyridine ortho- and para-positioned pro-
tons (Ho and Hp, see Fig. 2). In a control experiment,
when N-methyl-N-phenylthiourea, which lacks a pyri-
dine moiety, was used for complexation, such binding
behavior of 5 was not observed. Taken together, these
preliminary results suggest a new approach to the
development of new hydrogen-bonding molecular
receptors and carriers based on pyridine–thiourea
conjugates.

In conclusion, we have developed a convenient method
for preparing a variety of N-pyridinothiourea deriva-
tives using the high-pressure-promoted uncatalyzed
condensation of isothiocyanates with aminopyridines.
Our findings with this new class of compounds show
that a pyridine–thiourea bifunctionality is effective for
binding diphenyl hydrogen phosphate through hydro-
gen-bonding interactions. We believe that the present
cogent synthetic method warrants future study.

Figure 1. 1H NMR chemical shifts of 3c upon addition of
diphenyl hydrogen phosphate 5. [3c]=4 mM. See Fig. 2 for
proton positions, Ha and Hb.

Figure 2. The plausible host–guest complexations.
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